
TECHNOSOFT INC.
The Adaptive Modeling Language. A Technical Perspective

THE COMPANY
TechnoSoft Inc., founded in 1992, is a leading
provider of object-oriented software for commercial
and defense applications. TechnoSoft offers an
advanced engineering framework, with an object
oriented modeling paradigm called the Adaptive
Modeling Language (AML), to enable the modeling
and simulation of the entire product development
cycle; integrating and automating product
configuration and visualization, design and analysis,
manufacturing and production planning, inspection
and cost estimation.

TECHNICAL RATIONALE
AML provides a Knowledge Based Engineering
(KBE) framework that captures knowledge from the
modeled domain and creates parametric models with
that knowledge. AML is "adaptive" in that it can be
used to model a wide range of domains that have
interacting components and constrained behavior
between them. AML can be adapted to diverse
engineering applications.

OBJECT-ORIENTED FRAMEWORK
AML’s framework supports a single underlying
object-oriented architecture. AML's object-oriented
design paradigm provides two different types of
relations. A class-subclass relation allows data
abstraction, encapsulation, sharing of data structures
and behavior, and polymorphism. Subclasses can be
derived from any of the AML classes, or from user-
defined classes. Multiple inheritance is available for
classes. A class can be derived from an existing
class, and new properties can be added, or formulas
and values redefined for existing properties, as
shown below:

(define-class class-name
:inherit-from (class-list)
:properties (property-list)
:sub-objects (subobject-list)
)

The class-list is a list of classes to inherit from; the
property-list is a list of object properties that are
defined similar to the objects. The subobject-list is a
list of objects directly located under the object being
defined in the part-subpart hierarchical assembly. A
part-subpart relation enables the creation of a tree
structured unified part model where the children of
any node of the tree represent sub-objects. Various
aspects of the problem can be structured

hierarchically according to the domain being
modeled (Design, Analysis, Manufacturing, Costing
& Inspection).
AML provides an expanded set of classes that
support a wide spectrum of applications. Such
classes are the basis of various modules supported
within AML.

SYSTEM ARCHITECTURE

The AML modeling framework consists of several
modules (sets of classes and methods), relating to the
different knowledge domains, each focusing on
different functionality. All the modules are written
within the AML object-oriented architecture although
they do communicate with external programs through
the Virtual Layer Architecture. Additional modules
can be defined and loaded into AML to ‘adapt’ the
language for a specific purpose. Since AML is
modular, only the necessary systems need to be
loaded into AML. If a problem requires a modeling
framework without graphics or geometry, only the
kernel needs to be loaded for that application.
Applications invoking different aspects of the system
built in AML will utilize a common user interface to
the system. User familiarization is required only with
one interface irrespective of the applications. The
Design, Analysis, Manufacturing, and Inspection
modules all utilize a common AML interface.

THE AML KERNEL
The lowest level of the AML modeling paradigm
provides the language constructs for defining classes,
methods, and the constraint mechanism. All
subsequent objects simply augment the language.
The AML core system provides the ability to
dynamically instantiate classes and methods and to
add, edit, and delete objects and properties at
runtime. The constraint mechanism, the part
hierarchy, and other basic language constructs are
also provided by AML.

DYNAMIC MODELS
Since design is inherently iterative and dynamic,
AML is also dynamic in nature. Values and formulas
of properties can be changed after the model is
instantiated. AML also permits the addition and
deletion of objects and properties after the model is
instantiated. Methods can be defined against any
AML class or one derived from an AML class. This
lets the user modify behavior of classes according to

The Adaptive Modeling Language. A Technical Perspective, Page 2

the needs of the application. Polymorphism as well
as `virtual functions' can be utilized.

PROPERTY OBJECTS
AML permits the definition of new property classes
inheriting from existing ones such as property-object.
Properties can be added to and methods written
against a property class like any other class. In fact, a
property-object is also derived from the AML object
class. The property objects are the basis for
accessing the virtual interfaces to communicate with
external databases, foreign applications, geometric
modelers, etc.

METHODS
Methods can be defined against any AML class or
one derived from an AML class. This allows the user
to modify behavior of classes according to the needs
of the application. Polymorphism as well as `virtual
functions' can be utilized.

UNIFIED PART MODEL
Various aspects of a problem can be detailed through
a single unified model in AML. The design strategy
and related engineering and production processes are
captured within a single part model, represented by a
hierarchy of objects. An example of such an
application is the design automation and analysis of a
combustion engine. A geometric design is created
followed by the association of various physical
attributes with the geometry. Then the attributes for
a finite element model, and the strategy required for
generating the mesh model along with various input
files for the analysis solver, are maintained. AML
enables the various aspects of the engineering
processes to be stored in a single model in a
structured fashion. Furthermore, knowledge for
manufacturing, inspection, cost, and tooling can be
incorporated into the same model for the automation
of the manufacturing and inspection process plans.
Feedback could be provided at various stages to
different entities in the model. A complete user
interface for the problem including input and output
forms, menus, etc. can also be associated with the
same part model that encompasses the various
aspects of the application.

MODULAR, VIRTUAL LAYERS
ARCHITECTURE

AML supports a modular underlying architecture
consisting of a number of virtual layers that make it
easy to interface to foreign applications or modules.
Different modules within AML can be easily
replaced or extended. A number of solid modelers
are supported. An AML application can interface
among different solid modelers without changes in

the application code. Through the AML virtual
layering interface, additional applications such as
engineering analysis solvers, other solid/surface
modelers, or any other engineering applications can
be seamlessly integrated. The AML syntax is
independent of the underlying foreign application
since all communication is handled though the virtual
layers. AML objects are fully portable and can
seamlessly interface with other modelers or
applications without changes to the user defined
objects in the application source code.

Since AML supports a modular underlying
architecture, additional modules required by the user
can be easily integrated. Existing third party
applications can be integrated with AML independent
of the language or the operating system that they are
developed in. Existing modules are written in C,
C++, FORTRAN and LISP. The wide range of
languages is proof that AML allows easy, open
integration of additional modules.

The AML paradigm provides a common interface to
a number of solid modelers in addition to different
mesh generators and analysis solvers. This interface
is implemented through a Modular and Virtual Layer
Architecture, providing a common consistent
interface to underlying foreign applications. Another
advantage of the Virtual Layer Architecture is that a
design can be created using different modeling
engines. For example, the same geometric design
could be created using the SHAPES™, ACIS™ or
Parasolid™ solid modelers to compare accuracy and
performance, or imported via STEP or IGES from
various CAD systems. Similarly an analysis model
could be exported to various solvers such as
FLUENT™ or SPECTRUM™ without requiring
changes in the analysis model.

CONSTRAINT MECHANISM
AML's underlying constraint mechanism supports
demand driven and dependency backtracking
behaviors. Demand driven refers to the fact that the
value of a property is not calculated until it is
demanded. Until a value is demanded, an internal
flag refers to the property value as being unbound or
the property being smashed. Several properties that
effect a certain property can be modified, but the
effected property does not need to be recalculated
every time, only when it is finally needed.
Dependency backtracking is the mechanism that
actually propagates constraint changes throughout the
part model. When a property is modified, all the
properties in its effect list are smashed. When a
property is smashed, it further smashes all properties
in its effect list, propagating the change by notifying

The Adaptive Modeling Language. A Technical Perspective, Page 3

entities that they need to be recalculated when
demanded next.

MODEL TREE SEARCH
AML employs a unique mechanism for associating
properties and objects within formulas and values
referred to as the referencing. The the mechanism
provides the means for querying the model for
properties and objects as well as establishing
constraint relationships. Additional functionality and
querying mechanisms are provided to enable
extended definition of constraints and dependencies.
The select-object function provides a means of
selecting objects over the entire model, or for a
particular branch of the tree.

PARAMETRIC DESIGN
The constraint mechanism coupled with the tree-
search provides the parametric modeling
environment. Several properties of the model can be
changed and then the results can be computed, which
may result in new geometry or different outputs. A
"what-if" scenario can be achieved without the user
having to manually notify entities of change. The
change-value and change-formula methods assist in
modification of properties.

EVENT TRIGGERS
Although a demand driven paradigm suffices for
several applications, situations arise that require
notification of entities that may be outside the
domain of dependencies and certain actions need to
occur at the moment an event takes place. The
system defines classes that can be inherited into
objects to define actions on creation, deletion, change
and smashing of properties or objects. An example
of the use of an event trigger is in the way AML
handles the freeing of external pointers on
notification from AML events. When a property that
holds a pointer external to AML is smashed, a trigger
is activated that invokes the system call to destroy the
pointer and unbound the property. This cannot be
done using dependencies alone since the pointer is
external to the constraint network. This mechanism
is unique to the AML functionality of the Virtual
Interface that independently manages automatic
allocation of memory to external applications.

GEOMETRY
AML supports advanced parametric solid and
surfacing capabilities including “web” geometry with
complete topology access and mixed Boolean
operations. The advanced geometry module supports
seamless virtual interfaces to Shapes™, Parasolid™
and ACIS™. Additional solid/surface modeling
kernels could be easily integrated via the AML

Virtual Layer Interface (VGL). AML’s VGL enables
the user to preserve the AML application code while
extending its compatibility to other applications and
modelers.

The various applications of AML including design
automation, layout and configuration, manufacturing
planning, and finite element modeling and analysis,
have different geometric requirements. These
individual requirements are satisfied through the
capability of augmenting the part model for different
representations to satisfy various demands of the
different applications. These different
representations are manipulated through a unified
part model. AML presents a number of
objects/classes for modeling simple primitives in
addition to complex geometrical operations.
Complex Boolean operations for mixed-dimensional
solid, surface, and/or wireframe representations,
incorporating non-manifold topology, are also
supported. Additional objects for advanced
modeling of free-form surfaces (NURBS, Beziers,
etc.) also exist. AML supports a STEP and IGES
interface to external CAD systems.

GEOMETRIC REASONING
AML supports geometric reasoning for process
planning automation to integrate the part design with
the manufacturing, inspection, or analysis plans for
simultaneous engineering. Various queries and
methods to enhance and modify the part geometry as
required by the manufacturing, analysis, and
inspection processes, are also supported by AML.
For example, queries about a distributed set of points
on a free form surface, along with their normals and
connected path could be dynamically queried and
presented in a separate object. This object could also
be used for an inspection plan.

PROCESS PLANNING
AML provides a suite of objects, which are fully
integrated, supporting the general requirements of
manufacturing and inspection process planning
automation. Present manufacturing capabilities
includes machining, supporting milling and hole
making process planning as well as cost estimation.
Also a unique tool path planner for NC is fully
integrated within AML. This dynamic tool path
generation supports up to five axis NC tool path
planning. The automated path planner supports
geometrical reasoning capabilities which are
suitable for applications in spot welding, arc welding,
spray painting, water jet cutting, Eddy Current
inspection, and other applications that require the
position and motion control of a tool/probe moving
on or about complex shapes and surfaces.

The Adaptive Modeling Language. A Technical Perspective, Page 4

Capabilities to control multiple path offsets, distance
from, and orientation between the tool and the
surface are also automated. The uniqueness of the
integrated and dynamic link between the geometrical
modeler and the path planner comes from AML’s
single underlying object-oriented architecture.

GRAPHICS
Through its virtual layer capabilities, AML supports
advanced visualization techniques for manipulation
and display of the geometrical objects. These
capabilities include limited functionality for post
processing and visualizations, such as color mapping
using various grouping techniques. AML supports
various objects for creating dynamic charts such as
bar charts, curve fitting charts, etc.

PARAMETRIC FEATURE BASED DESIGN
AML provides a unique interactive design
environment. It is parametric, constraint driven, free
form feature based, and has solid and surface
modeling capabilities. Geometric as well as non-
geometric features can be modeled. The system
enables easy referencing and parametric association
for feature properties that could be linked to external
processes as a part of the Virtual Layer interface.

USER INTERFACE
AML provides a complete set of interface classes
including forms, buttons, radio boxes, check boxes,
input forms, and pop up menus supported on
Unix/Motif and Windows NT/95. Since the user
interface model is represented using the same
knowledge representation system as the applications,
it too is dynamic in nature, and the attributes of the
user interface entities, (color/size of buttons), can be
altered dynamically.

ATTRIBUTE TAGGING AND PROPAGATION
AML provides a unique mechanism for facilitating
association of information with entities in a
geometric model. Attribute Tagging and Propagation
is being utilized for facilitating association of
engineering processes information with entities in a
geometric model. This information typically needs to
be conveyed to downstream processes such as
manufacturing, inspection, meshing or analysis.
Typically, when a geometric model is constructed,
several stages of construction geometry are required.
These construction entities are then booleaned,
transformed, swept, revolved, etc., to create the final
model. In a parametric modeling environment,
reconfiguring the model involves the modification of
parameters at the construction level and the
regeneration of the geometric model. All
supplementary information would need to be

reconveyed to the final geometry as well as
downstream processes every time the model is
reconfigured. This could be a very tedious task
requiring major interaction with the user and delays
in the engineering cycle. AML’s unique parametric
modeling paradigm provides the capability to
propagate attributes through geometric operations
thereby automating the procedure of geometrical
enhancement of the final geometry to extract the
required data for complete automation of the finite
element modeling and analysis processes as well as
any other engineering processes.

First, using Attribute Tagging, the supplementary
information is associated with construction
configurable geometry. Next, every downstream
operation, including final design, analysis, and
manufacturing has the information passed on through
Attribute Propagation. Attribute Propagation ensures
that every operation on the geometry, including reads
and writes, Booleans, sweeps, etc., propagate the
attributes through the operation. As a result, when
the model is reconfigured, i.e., upstream design
entities are modified in geometry or other properties,
the Attribute Propagation mechanism ensures that
supplementary information is passed downstream
automatically. The Attribute Tagging and
Propagation mechanism is integrated with the
demand driven and backward propagation
mechanism using Event Property objects.

MESH GENERATION
The Automatic Mesh Generation system is an AML
module that allows tight integration of various mesh
generation and analysis applications. AML provides
a Virtual Interface to support various third party
mesh generators. The system permits the selection of
geometry to mesh, tagging the vertices, edges and
faces of geometry for selective refinement of the
mesh, and meshing the geometry by calling the
external mesh generator. It provides objects for
meshing as well as a user interface. It also provides
various objects and user interfaces for visualizing the
mesh and querying the mesh database created by the
mesh generator.

ANALYSIS MODELING
The Finite Element Analysis (FEA) Modeling
module will enable the definition of an analysis
problem by defining regions of interest, material
models, boundary conditions, solution strategies, and
other requirements for analyzing various problems
utilizing a Mesh Generator and a Finite Element
Solver. The various entities of interest are modeled
as AML classes that can be utilized to instance a
complete FEA problem model. The problem can be

The Adaptive Modeling Language. A Technical Perspective, Page 5

associated with the geometric objects as well as the
mesh. The system generates several files that the
solver can read and execute to generate results. This
system can be extended to provide a Virtual Solver
Layer that can talk to various FEA solvers.

COMPACT AND PORTABLE
ARCHITECTURE

The complete AML paradigm, including the various
modules, requires less than 30MB of disk space.
AML requires 100MB of swap space with 64MB of
RAM recommended (32MB RAM could meet the
requirements of various applications). The relatively
small requirements of swap and memory size reflect
AML's object oriented unique architecture. AML is
supported on UNIX platforms and Intel based PC's
running WINDOWS NT, 98, or 95. The compact
size of the AML system is proof of its innovative
advanced architecture when compared to the
requirements for storage, swap size, and electronic
memory of other competitive products.

SUMMARY
The AML paradigm provides a versatile, parametric
modeling environment supporting a unified part
model for integrated design and process automation.
The AML object-oriented modeling framework
allows the user to develop applications using
dynamic objects for composing adaptive models that
can be tailored to various engineering requirements at
runtime. The dynamic environment is suited to
simulating “what-if” scenarios and iterative modeling
environments. AML offers a flexible modeling
environment that can be used for a wide spectrum of
engineering problems requiring the integration of
various engineering disciplines all supported within
an adaptive object oriented part model. AML enables
the abstraction of the modeled domain into a set of
interacting entities which can be applied to problems
requiring a high degree of visualization and complex

geometric operations for integrated design and
process automation.

AML is a revolutionary modeling framework that
shortens the design-to-manufacturing cycle, resulting
in rapid part production with lower cost. Complex
parts and detailed process plans for manufacturing,
analysis, and inspection are concurrently designed
and developed in a fraction of time compared to
current methods. Improved quality and efficiency is
realized by producing intelligent, error-free designs.

AML PROVIDES MANY ADVANTAGES:
• A true concurrent engineering environment for

integrated product-process design
• Constraint driven, parametric, feature-based design

environment
• Industry standard support including IGES, STEP,

CORBA (in release 4.0), and JAVA
• Platform independent, fully portable across UNIX

and NT
• Configurable and customizable user interface
• Single Syntax for all operations
• A single underlying object-oriented database, with

open access
• Virtual links to multiple geometry engines, mesh

generators, OS systems, UI's, and DBMS
• Geometrical reasoning for process and inspection

planning automation
• Provides the framework to conduct multi-

disciplinary trade studies
• Automatic Mesh Generation to speed up model

analysis preparation
• Feature reduction and suppression for design

evaluation
• A framework to capture the design intent
• Activity Based Costing (ABC) to dynamically

assess the impact of design or material change

TechnoSoft Inc. is a team of engineering software
experts dedicated to the automation of the engineering
and product design process, reducing the design costs
and time to market. Our knowledge engineers will apply
our advanced technology software to configure or
customize a system to meet your requirements. We
provide exceptional service, training, and support, and
are focused solely on delivering the best and most
productive solutions for our customers.

TECHNOSOFT INC.
11180 Reed Hartman Highway
Cincinnati, OH 45242
Phone: (513) 985-9877
Fax: (513) 985-0522
Email: info@technosoft.com

TECHNOSOFT, The TECHNOSOFT logo, and the Adaptive Modeling Language are registered trademarks of

TECHNOSOFT INC. Copyright TECHNOSOFT INC. 1993-2003

