
 

ABSTRACT 
The US Air Force Research Laboratory, along with its 
contractor partners, is developing an integrated modeling 
environment for the conceptual and preliminary-level design 
and synthesis of airbreathing, hypersonic vehicles. This 
effort is built on the team’s successful prototype of a similar 
environment for rocket-powered space access vehicles. The 
modeling environment under development will begin by 
developing a 3-4 level deep hierarchy of objects that 
represent a hypersonic vehicle. Initially, these objects will 
contain only conceptual-level representations of the 
geometry and mass properties of the vehicle and its 
components. This initial information will be used with a 
vehicle synthesis routine to develop a “closed” conceptual 
design. The second step in the design process is an initial 
analysis of the aerodynamic and propulsive characteristics 
of the vehicle. These analyses will be conducted in the 
environment and the geometric model developed in the 
initial hierarchy of objects will be of sufficient fidelity to 
support these analyses. Next, the mass properties, 
aerodynamic and propulsion analysis results will be used by 
a trajectory simulation code, also integrated into the 
environment, to determine if the initial vehicle design will 
meet the mission performance requirements. Finally, the 
results of the trajectory simulation will be used to iteratively 
resize the vehicle until the mission requirements are 
satisfied. Additionally, this paper will describe the modeling 
environment used for this effort, lessons learned from the 
development of the environment for rocket-powered 
vehicles, and the next steps planned to expand the 
capabilities of the integrated modeling environment. 

INTRODUCTION 
The US Air Force has a renewed interest in investigating 
airbreathing hypersonic vehicle concepts to meet its needs 
for future strike and reconnaissance systems [1]. In addition, 
NASA is continuing its investment in hypersonic 
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airbreathing propulsion systems and vehicle concepts for 
space transportation applications. In recent years, these 
interests have been exemplified by NASA’s X-43 (Hyper-X) 
program [2] and the Air Force’s HyTech (Hypersonic 
Technology) program. 

Like all engineering organizations, the Air Force Research 
Laboratory is interested in conducting its vehicle and 
technology forecasting studies as quickly as possible, with 
as high fidelity an analysis as is feasible and with a proven, 
repeatable design and analysis process. The approach that 
the Air Force Research Laboratory team has taken is to 
integrate its design, analysis and modeling tools into a 
collaborative, network-distributed design environment. 

The benefits of using an integrated design environment to 
reduce the time and potential errors associated with the 
transfer of data between design and analysis codes are well 
documented [3, 4]. This paper will present the initial steps in 
the development of an integrated modeling and analysis 
application for hypersonic airbreathing vehicles. This 
application will be developed using a modern knowledge-
based engineering environment and will incorporate the 
lessons learned from the development of a similar 
application for rocket-powered space access vehicles [5]. 
Furthermore, the current effort will demonstrate a 
significant reuse of much of the software that was developed 
for the launch vehicle application. 

ADAPTIVE MODELING LANGUAGE 
For this effort, the Adaptive Modeling Language 
(AMLTM), developed by TechnoSoft, Inc., was selected as 
the design modeling environment. AML is a framework for 
Knowledge Based Engineering (KBE) that provides the 
ability to capture the vehicle design and analysis process and 
manage the data transfer between the various codes [6, 7]. 
The primary features of AML that led to its selection for this 
project are: its use of object-oriented programming and the 
Unified Part Model paradigm; its native understanding of 
geometric objects and features; and its support for multiple, 
simultaneous, network-distributed users. 

Modeling Paradigm 
The benefits of object-oriented programming (OOP) are 
well understood. OOP both increases the developer’s ability 
to reuse code that was previously developed, and simplifies 
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the initial development of the code. The Unified Part Model 
paradigm is an implementation of OOP in which the model 
of a given component, the fuselage for example, contains all 
the data about the fuselage. This paradigm helps ensure that 
the various models of the fuselage are consistent across the 
different disciplines. 

To continue the fuselage example, this paradigm enforces 
the connection between the geometric model and the mass 
properties analysis. In the case of these disciplines, the mass 
estimating relationships (MERs), which are used to 
determine the vehicle’s mass properties, are highly 
dependent on geometry (e.g., tank volume, fuselage surface 
area), as well as the overall vehicle weight and mission 
requirements. The Unified Part Model paradigm ensures that 
all weight items will be tracked by allowing the MERs to be 
included in the geometric objects. This can be visualized in 
the model tree shown in Figure 1. In this rocket-powered 
TSTO vehicle example, the tank-stack object contains both 
the geometry of the tanks shown and the weight and CG 
location of the tank. 

Figure 1: Unified Part Model Tree 

In addition to being object oriented, AML has the ability to 
manage the relationships between the objects. As the model 
is being built; that is, as objects are being instantiated and as 
formulas are being coded to associate the parameters of one 
object with those of another object, AML is building a table 
of dependencies between the objects and properties of the 
model. 

This “dependency tracking” is used to provide two 
computational benefits. First, dependency tracking allows 
AML to “smash” the values of all the variables that will 
change because of a change in a parameter upon which the 
variable is dependent. This feature means that the model 
will always be consistent. Once two parameters are related, 
the user can work with one portion of the model while not 
worrying that he is working with old data from another part 
of the model. 

Related to AML’s implementation of dependency tracking is 
its use of demand-driven computation. This feature means 
that for any requested calculation, only the calculations that 
are required will be computed, not the entire model. This 
feature is useful for complex models. For instance, in the 
fuselage model shown above, perhaps the tank geometry is 
calculated as an offset from the fuselage geometry. In this 
model, if the an aerodynamics engineer wanted to change 
the fuselage diameter and determine the external 

aerodynamic effects, the engineer would not have to wait for 
the tank geometry to be recomputed (or perhaps even the 
tank weights to be updated) because the aerodynamic 
calculation only requires information about the fuselage 
surface. 

Geometric Modeling 
In addition demonstrating the Unified Part Model paradigm, 
Figure 1 also shows AML’s native geometric modeling 
capability. Included with AML’s basic set of objects are 
classes to support a wide variety of commercial geometry 
engines. This feature means that geometric modeling is not 
handled as just another discipline. AML has a native 
understanding of solids and surfaces, can perform Boolean 
operations and has support for automatic mesh generation. 

This capability is most easily demonstrated by considering 
AML’s integration with Unigraphics and MSC.Patran. One 
of AML’s supported geometry kernels is Parasolid, which is 
also the kernel for Unigraphics and MSC.Patran. This 
implementation means that AML can perform all the 
complex geometric calculations that are available in 
Unigraphics while natively transferring that geometry to 
MSC.Patran for meshing. Similar capabilities are available 
or under development for a variety of common CAD 
packages and commercial meshing programs. 

Network-distributed (web-based) design modeling 
The last major feature of AML that will be used for this 
application is AML’s ability to allow multiple, simultaneous 
users to collaborate in a single engineering environment, 
even though they are distributed across a wide area network. 
AML supports two modes of operation (distributed-user 
collaboration and distributed-model collaboration), which 
can be used separately or together depending on the needs of 
the engineering team.  

The distributed-user mode allows multiple users to interact 
simultaneously with a single model tree. In this mode, there 
is a single model that resides on a server with many users 
who have client interfaces on their local machine. 
Depending on the permissions granted, which can vary for 
each user, the users can view the model, change the values 
of model parameters, add objects to the model and even 
allow other users to see their current view of the model. This 
mode is useful for collaboration between engineers working 
in the same discipline. For instance, a novice aerodynamicist 
can receive help with the intricacies of a particular analysis 
code from a more senior engineer. 

The second mode, distributed-model collaboration, is more 
useful for a multidisciplinary engineering project. In this 
mode, each engineer has an AML model that is tailored for 
his or her specific discipline. Then objects from the separate 
models can be connected through a central Object Request 
Broker (ORB). The use of an ORB allows disciplines to be 
added as needed. It can also allow models to connect and 
disconnect at will. This feature is useful for engineering 
teams that are spread across time zones. One discipline can 
start working; a second discipline can join (or rejoin) the 
collaboration and send and receive updates to the common 
objects; then the first discipline can disconnect from the 
collaboration. 

The capability for simultaneous collaboration amongst 
multiple engineers will be useful for this project. Engineers 
from at least five different cities, spread across the United 



 

States will be participating in the development of the 
hypersonic airbreathing vehicle design application. 

ENGINEERING DISCIPLINES 
The initial development of the integrated application will 
concentrate on conceptual design and synthesis of 
hypersonic airbreathing vehicle concepts. It is hoped that the 
design environment can then be expanded to model the 
preliminary and detailed levels of the development of a 
hypersonic vehicle. The authors believe this development 
strategy is feasible because of their experience with AML-
based applications that are being used to capture and 
improve the detailed design of combustion engines [8]. 

Figure 2 shows the disciplines that are involved with the 
development of hypersonic vehicles. The figure also 
represents how the disciplines interact during the design 
process. Displayed in blue are the five disciplines involved 
in the conceptual-level synthesis of a hypersonic vehicle. 
Then, following sufficient iteration among these disciplines, 
the additional disciplines are added to refine the design of 
the vehicle through further iteration and studies. 

 

Figure 2: Hypersonic Airbreathing Vehicle Design Structure 
Matrix 

For the effort documented here, the five disciplines that will 
be integrated into the application are: geometric modeling, 
aerodynamics, propulsion analysis (incl. flow path analysis), 
trajectory simulation and mass properties analysis. 
Additionally, this model development effort will take 
advantage of the inherent model and software reuse 
capability provide by AML’s implementation of the object-
oriented programming paradigm. This project will benefit 
greatly from the previous development of a design modeling 
application for rocket-powered launch vehicles [5]. 
Specifically, the aerodynamic analysis and trajectory 
simulation applications that were integrated for use on the 
previous effort will only require minor modifications to be 
applied to this application. 

Synthesis and Geometric Modeling 
The first step in developing a hypersonic vehicle design is to 
choose two configuration parameters, the vehicle class (e.g., 
2-D lifting body, waverider, inward-turning or 
axisymmetric) and the design Mach number. Once these 
decisions are made, basic aerodynamic principles [9] can be 
used to define an initial propulsion flow path. 

For the initial vehicle configurations that will be modeled in 
this effort, the FloGeo code from Boeing Rocketdyne will 
be used to generate propulsion flow path parameters for a 2-
D lifting body configuration. FloGeo is method of 
characteristics based application that has been developed in 
Microsoft Excel. The application determines the necessary 
angles, lengths and other geometric properties of the inlet to 

end up with a “shock-on-lip” condition for the inlet flow at 
the specified design Mach number. 

The next step in the design process is to develop an outer 
mold line (OML) model of the vehicle that is suitable for 
use with computational aerodynamic techniques. For this 
effort, a parametric OML model will be developed using 
AML’s native geometric modeling capability. The process 
described here is for the 2-D lifting body class of vehicles, 
although a similar process could be used for the other 
classes of hypersonic vehicles. 

The authors took this approach based on their previous 
experience with design modeling efforts for aerospace 
vehicles. They have found that developing different AML 
objects for different types of configurations is preferable to 
trying to develop a single parametric model capable of 
modeling the complete range of possible hypersonic vehicle 
configurations. 

The first step in developing the OML is to model the 
propulsion flow path (i.e., keel line and cowl) as a set of 
parametric curves. The parameterization of these curves will 
match the output of FloGeo and may be used with an 
optimization procedure to improve the vehicle’s 
performance at “off-design” Mach numbers. 

Next, these curves are “extruded” to model the lower surface 
of the vehicle. The width of this extrusion will be 
determined from required internal volume of the vehicle. 
This required volume will be estimated initially, then 
verified by a mission and trajectory simulation. 

Following the development the model of the vehicle’s lower 
surface, a similar procedure is used to model the vehicle’s 
upper surface. That is, first, a parametric curve is developed 
to control the shape of the upper surface, then that curve is 
extruded to create the upper surface model. The difference 
between the development of the upper surface and the lower 
surface is that the upper surface is designed solely based on 
aerodynamic and internal volume considerations, while the 
lower surface is strongly driven by its impacts on the 
performance of the propulsion system. 

The last major step in developing the geometric model of 
the OML is to connect the upper and lower surfaces. This 
will be accomplished using the parametric surface modeling 
technique that was developed in AML for modeling 
aerospace surfaces. An example of this technique, used to 
build a parametric fuselage model, is shown in Figure 3. 
This fuselage geometry was built using two kinds of related 
profile objects termed “u” and “v” curves. These profile 
curves are controlled parametrically to shape and size each 
cross-section and the surface’s behavior between the cross-
sections at specified intervals. The external surface is then 
modeled as a nurb-surface that connects the various points 
that make up each profile curve. 

For the OML of the 2-D lifting body class hypersonic 
vehicle, this profile curve paradigm will be used to connect 
the upper and lower surfaces. First, the edge of the upper 
and lower surface will be selected as the first and last v-
curve for the side surface. Then points will be selected along 
each curve to form the starting points of a number of u-
curves. Next, the u-curves will be developed freehand or 
with a simple mathematical formula. Finally, intermediate v-
curves will be formulated or sketched freehand and the 
complete side surface will be automatically determined from 
these construction curves. 



 

Figure 3: Fuselage Geometry Object 

The final step in developing the geometric model, which 
will be used for computational aerodynamic and propulsion 
analysis, is adding control surfaces to the basic 2-D lifting 
body shape. There are two types of control surfaces that 
need to be developed, lifting surfaces and surfaces to control 
the propulsion flow path. 

The models of the lifting surfaces (i.e., horizontal tails, 
vertical tails and canards) are developed in the same manner 
as the geometry model shown in Figure 3. Except in this 
case, the u-curves are airfoil sections and the v-curves are 
used to define the taper and twist of the lifting surface. 
Then, once the basic lifting surface has been modeled, it can 
be positioned relative to the 2-D lifting body shape and 
trimmed or joined to make a complete “watertight” surface. 

To develop propulsion flow path control surfaces (e.g., a 
moving cowl lip or a moving inlet door for the turbine 
engine flow path of a TBCC engine), the OML that was 
generated by using basic aerodynamic principles, the 
FloGeo code in this case, must be modified. 

Two methods are available to modify the OML. One option 
is to use Boolean operations on the OML. Using the cowl lip 
as an example, the process would require cutting the cowl to 
create the moving lip geometry; rotating the lip it to the 
desired angle; then trimming, extending and joining the 
rotated cowl lip to the remaining fixed portion of the 
original cowl. While this method is effective, and is 
commonly used by the aerospace industry, the method does 
not easily lend itself to design automation or optimization. 
The author’s preferred method is to include parameters for 
these moving propulsion flow path surfaces in the original 
flow path curves that were modeled in AML. Then, a design 
model can be developed to automatically regenerate the 
lower OML surfaces when the parameters that change the 
propulsion flow path are varied. For the cowl lip example, 
the procedure would be generating a new cowl curve, 
extruding that curve to create the cowl surface and 
modifying the engine sidewalls to attach the cowl to the rest 
of the vehicle. 

Mass Properties Estimation 
The second discipline that is needed for the conceptual 
design and synthesis of a hypersonic vehicle is mass 
properties analysis. For this project, the authors have taken 
two approaches to integrate mass properties analysis into the 
design environment. The first, and simplest, method is to 
link an Excel spreadsheet-based weights model to AML. 
The second, and preferred, method is expand the AML 
geometry objects that were developed in the previous 
section so that these objects contain properties, objects and 
methods that will calculate estimates of the object’s mass 
properties. 

Spreadsheet-based Weights Model 
The spreadsheet-based weights model that was used for this 
project was developed at the NASA Langley Research 
Center. This model consists of a main, system-level sheet 
with links to five discipline specific sheets (i.e., propulsion, 
structures, subsystems, landing gear and the thermal 
protection system for the airframe). The main sheet is the 
only one that needs to be linked to AML, with the other 
sheets being connected through the main spreadsheet. 

The main, system-level spreadsheet takes two types of input, 
geometric parameters and design parameters. The geometric 
parameters will come from the OML model that was 
described in the previous section. Examples of the geometric 
information that is needed as inputs to the mass properties 
spreadsheet are: vehicle internal volume; wetted and 
planform areas for the fuselage and tails; surface areas 
covered by the various types of thermal protection systems 
(TPS); fuselage length; and combustor length. 

The second type of inputs that are needed for mass 
properties analysis are determined either from mission 
requirements or from other, non-geometric, design 
decisions. Examples of these design inputs are: payload 
weight and volume; number and thrust level of the rocket 
engines, if needed for single stage to orbit vehicles; TPS unit 
weights, which are based on the type of TPS selected; 
vehicle design g-limit; and propellant fraction required. 

Once the input design parameters and geometric parameters 
are determined, a set of mass estimating relationships 
(MERs) is used to determine an initial estimate of the mass 
properties of the vehicle. For this project, the team will use 
two types of MERs; one type based on component geometry 
and a second type based on system similarity. 

An example of a geometry-based MER is Equation 1. This 
equation estimates the weight of the vertical tail based on 
the surface area of the tail. This equation was developed by 
fitting a curve to the historical data shown in Figure 4. 

 89.05 09.1 ∗∗= vtSWT  [1] 

 
Figure 4: Vertical Tail Weight vs. Area 

An example of the system similarity type of MER is the one 
used to estimate the mass of the vehicle’s electrical system. 
In this case, the team estimated that the weight of the 
electrical system power supply will be 770 lbs, because that 
is the weight of the system on the Space Shuttle. 

While some MERs, like the two examples presented above, 
are explicit, other MERs require and implicit solution 
method. For instance, the MER for the landing gear mass 



 

strongly depends on the overall vehicle weight, which in 
turn is weakly dependent on the landing gear mass. This 
type of relationship leads to the need for an iterative process 
to ensure that the sized vehicle has a consistent set of mass 
properties. 

The iteration process used with the spreadsheet-based 
weights model is based on determining a photographic 
scaling factor that makes the internal volume available 
match the internal volume required. This process requires 
the extra step of estimating component volumes as well as 
masses. The volume estimates are developed using a set of 
relationships that are conceptually similar to the MERs 
described above. The result of the iteration process is a 
scaling factor that can be used to scale or redraw the 
geometric model described above. 

AML-based Weights Model 
The major limitation of the spreadsheet-based weights 
model is that it is limited to photographic scaling of the 
vehicle that was created using the geometric modeling 
process. A few of the potentially useful vehicle changes that 
photographic scaling does not allow are: changing the 
vehicle’s length and width independently (e.g., constraining 
the vehicle’s length or width) or modifying the vehicle’s 
upper surface shape to change the volume while keeping the 
vehicle’s planform fixed. 

The photographic scaling limitation will be eliminated in the 
second mass properties estimation method, the AML-based 
weights model. In this model, the mass estimating 
relationships will be incorporated into the geometric objects 
that were used to develop the OML model and geometric 
objects used to model the subsystems and internal 
components. This model will take advantage of AML’s 
unified part model paradigm that was described above and is 
shown in Figure 1. 

The major difference between the AML-based weights 
model and the spreadsheet-based weight model can be seen 
by examining the implementation of the vertical tail weight 
MER shown in Equation 1 above. In the case of the 
spreadsheet-based weights model, to calculate the vertical 
tail weight, the tail area (or the tail span and chords) must be 
extracted from the AML-based geometry model of the OML 
and input as parameters to the spreadsheet. However, in the 
AML-based weights modeling approach, a property called 
mass is added to the AML object that was already developed 
to model the geometry of the vertical tail. This new property 
can be programmed to calculate the weight of the vertical 
tail using the tail area or other parameters that are already 
available in the vertical tail object. These parameters are 
already available because they were needed for the 
geometric model. 

The vertical tail weight model also exemplifies the paradigm 
that the methods for calculating the weights of each 
component of the vehicle will be developed as part of the 
object that also contains the top-level, conceptual geometric 
information about vehicle. Note however, that the fidelity of 
the geometric model and mass properties calculation may 
vary from vehicle component to vehicle component. For 
instance, the power system may be represented by boxes of 
fixed volume and weight, while the landing gear model may 
be made up of many additional geometric pieces (i.e., tires, 
brakes, struts, etc.) and have a complex MER based on 
takeoff weight, landing speed and runway surface. 

Once MERs are integrated with a sufficient number of the 
AML objects to represent all of the major weight items, an 
iterative procedure must be developed in AML to ensure 
that the MERs are consistent. Like the spreadsheet-based 
weights model, this iteration will involve changing the size 
of the vehicle. However, because the mass properties 
estimate is tightly tied to the geometric components, design 
engineers will be able to develop more complex sizing 
routines. For instance, tail areas could be sized based on 
stability considerations and the vehicle’s width could be 
constrained to accommodate an integer number of fixed 
sized airbreathing engines. This flexibility should allow the 
design team to synthesize feasible vehicles more easily. 

Propulsion Flow Path Analysis 
The bulk of the effort associated with this project will be the 
integration of ramjet and scramjet design and analysis tools 
into the AML environment. The first decision that needs to 
be made is what fidelity of propulsion flow path analysis is 
needed for conceptual-level design and synthesis of a 
hypersonic vehicle. Above, we described the FloGeo code, 
which will predict the on-design performance of the 
propulsion system. While this may be sufficient for the 
synthesis of cruise vehicles, a better prediction of the 
vehicle’s off-design performance is needed for the design of 
accelerator configurations for access-to-space applications. 

For this effort, the low-fidelity method that the authors have 
chosen to determine the performance of propulsion system 
is a combination of three codes. Together, Rocketdyne’s 
FAST code, along with MCIA and L1IA from Lockheed 
Martin, provide tip-to-tail analysis of the propulsion flow 
path. MCIA will analyze the vehicle’s inlet from its nose to 
the beginning of the isolator, FAST is an “engine deck” that 
will model the isolator and combustor, while L1IA will 
complete the analysis from the end of the combustor through 
the nozzle. 

In addition to integrating these codes into AML, objects and 
methods will need to be developed to ensure that the flow 
conditions are consistent between MCIA and FAST as well 
as between FAST and L1IA. Finally, an AML procedure 
will be developed to create a table of propulsive forces and 
moments at various flight conditions (i.e., Mach Number, 
dynamic pressure and angle of attack). This table is needed 
for use with the trajectory simulation tool. 

An alternate method was considered for calculating the off-
design performance of the propulsion system. This method 
has two advantages. First, it is a single analysis code and 
second, it was already integrated into AML under a previous 
effort. The code that was considered is SRGULL [10] from 
NASA’s Langley Research Center.  

SRGULL uses the same approach for analyzing propulsion 
flow path as was described above. Namely, the flow path is 
divided into a forebody/inlet region, a combustor section 
and the nozzle. In SRGULL, the program is divided into 
subroutines to handle each section as opposed to the 
separate codes that were described above. As for the fidelity 
of the code, the calculations in the forebody/inlet and nozzle 
regions are 2-D or axisymmetric with 3-D corrections and 
the combustor flow is calculated using a 1-D method. 

The inputs required by SRGULL are the flow path 
geometry, the flight conditions, fuel type and throttle setting. 
When the code was integrated with AML, a user interface 



 

was also developed. A sample of the user interface is shown 
in Figure 5. 

 

Figure 5: Example of the User Interface for Keel Line 
Modeling for the SRGULL Analysis Code 

Even though SRGULL was already integrated into AML, it 
was not used for this project. This decision was made 
because the team was not comfortable with the code, 
whereas the team has extensive experience with the other 
codes described above. The authors have found that this 
situation occurs often. Typically, engineers have invested a 
considerable amount of time and effort in learning and 
improving the software tools that they use regularly and they 
are not willing to change software just because it is already 
part of an integrated process. The authors believe that each 
organization’s design process is unique and that any 
integrated design environment must be tailored to support 
the process that already exists within an organization. 

Aerodynamic Analysis 
The next discipline considered, aerodynamic analysis, does 
allow the authors to take advantage of codes that were 
previously integrated into AML. For this effort, the team 
was comfortable with using Missile DATCOM [11], 
PANAIR [12] and S/HABP to determine the conceptual-
level aerodynamic characteristics of the vehicle. Missile 
DATCOM is a semi-empirical code that can determine the 
forces and moments on a cylindrical or nearly cylindrical 
body, with small protuberances and axisymmetric finsets, 
over a wide range of Mach numbers. Some error will occur 
in using Missile DATCOM to analyze hypersonic vehicle 
shapes, however the team will use PANAIR to correct the 
calculation. PANAIR is a general-purpose aerodynamic 
code that uses a linear panel method. PANAIR is capable of 
determining the pressures on bodies and surfaces of 
arbitrary shape at subsonic and supersonic speeds. The final 
aerodynamic code that will be used is S/HABP 
(Supersonic/Hypersonic Arbitrary Body Program). S/HABP 
uses first order methods to calculate the pressures on 
arbitrarily shaped bodies and lifting surfaces at supersonic 
and hypersonic speeds. 

Along with integrating these codes into AML, a limited 
visualization capability has also been developed in AML. 
For example, Figure 6 shows a simple plot of aerodynamic 
data and Figure 7 illustrates a typical body pressure 
distribution. 

The final step in developing the aerodynamic analysis 
objects for hypersonic vehicles is implementing a method 
for determining or describing which portions of the OML 
are associated with the propulsion flow path and which areas 
are outside the propulsion flow path. This is very important 
for hypersonic vehicles because of the vastly different 

analyses that are used in each area. For instance, for a 2-D 
lifting body shape, the pressures, forces and moments on the 
entire lower surface of the vehicle are calculated using the 
propulsion analysis tools and the loads on the sides and 
upper surface of the vehicle are determined using regular 
aerodynamic analysis tools. Finally, the forces and moments 
on the external sidewalls and cowl of the engine need to be 
calculated by either the propulsion or aerodynamic analysis 
tools. Ultimately, what is needed is a procedure for 
determining a single set of resultant aeropropulsive forces 
and moments that vary as a function of flight condition and 
engine throttle setting. 

 

Figure 6: Cd for a Typical Wing-Body Vehicle as a Function 
of Mach Number as computed by Missile DATCOM 

 

Figure 7: Pressure Distribution on a Fuselage as Predicted 
by PANAIR 

Trajectory Simulation 
The final discipline needed to “close” the design of a 
hypersonic vehicle is trajectory simulation. Trajectory 
simulation is used to determine and verify that the amount 
of fuel available in the vehicle is sufficient perform the 
desired mission (i.e., cruise a specified distance or accelerate 
to a desired staging point). 

The trajectory simulation is used in an iterative process to 
determine the final, “closed”, conceptual design. An 
iterative process is needed because the fuel fraction is a 
required input to the mass properties analysis. The vehicle 
closure process that will be used this hypersonic vehicle 
sizing application is: 

1. Guess a required fuel fraction for the vehicle.  
2. Specify a design for the propulsion flow path and 

OML of the hypersonic vehicle. (Note: both steps 1 
and 2 are highly dependent on the design 
engineer’s experience and personal preferences.) 

3. Calculate the vehicle’s mass properties based on 
the geometric model, the fuel fraction required and 
other mission parameters. (Remember that another 
iterative process is needed here to ensure that the 
MERs are consistent.) 

4. Calculate the aeropropulsive forces on the vehicle 
for the flight conditions of interest. 



 

5. Use a trajectory simulation code to calculate the 
fuel fraction that would be required for this vehicle 
to perform the desired mission. 

6. Compare the results of step 5 with the guess from 
step 1 to determine if the fuel fraction required is 
consistent for this vehicle. If not, modify the 
vehicle’s OML from step 2, adjust the guess of the 
fuel fraction required and repeat the process. (Note: 
depending on the type and magnitude of the 
changes to the OML, the aeropropulsive force 
calculations from step 4 may not need to be 
repeated.) 

 
For this effort, two commonly used trajectory simulation 
and optimization codes, POST [13] and OTIS [14], will be 
considered. Both POST and OTIS have been integrated, to 
some level, in AML under previous efforts. 

The methods that were used to integrate POST and OTIS 
exemplify the tradeoffs that are possible in all code 
integration problems. The main consideration that needs to 
be made when planning a code integration project is how 
much of the original functionality of the code will be 
available to the user of the integrated design application. 
Typically, as more functionality is made available in the 
integrated application, more discipline specific, or code 
specific, experience is required of the user. However, 
limiting the functionality of the integrated code usually also 
limits the range of designs that can be examined and limits 
the code reuse benefits of the object oriented programming 
paradigm. 

Under previous efforts, POST was integrated using a 
“variant” approach, while the integration of OTIS was more 
comprehensive. 

The variant approach required that a trajectory simulation 
engineer develop a complete simulation input file for the 
problem using existing procedures. Then, the engineer 
identified which parameters and data tables would change 
(and could change) when the baseline vehicle is redesigned. 
Finally, a method was developed to create a new input file 
for the simulation code by automatically changing the few 
parameters and tables that were previously identified. 

A more comprehensive level of integration was developed 
for the OTIS 3.0 simulation code. The goal of this 
integration was to ensure that the complete functionality of 
the code was available in the integrated application. For 
OTIS, this also required the creation of a complex user 
interface. This is because the code has many settings 
available and these settings may be changed in each phase of 
the input. Note: phases can refer to changes in flight 
objective (e.g., minimum time climb or best altitude cruise) 
or changes in vehicle configuration (e.g., after launch 
vehicle staging or after weapons release).  

Because of the complete level of integration of OTIS, it was 
expected that the main user of this portion of the integrated 
application would be an experienced OTIS user. For this 
reason, the developers chose to develop the user interface in 
pages that correspond to sections of the OTIS input file. A 
portion of the main user interface form is shown in Figure 8. 

Furthermore, the AML programmers developed a basic 
online help interface for OTIS. The main feature of this help 
system is easy access to the definitions of the variables that 
are defined in OTIS. The developers have found that the 

cryptic abbreviations used by OTIS are one of the main 
concerns for new OTIS users. A sample of this help 
interface is shown in Figure 9. 

 

Figure 8: Main User Interface Form for OTIS in the 
Integrated Application 

 

Figure 9: Help Screens for Defining OTIS Variables 

The final significant part of the OTIS integration project was 
the development of a simple trajectory plotting object. This 
plotting object was developed mainly for use by the 
experienced OTIS user while debugging their setup of the 
trajectory simulation. A sample plot that was created using 
this capability is shown in Figure 10. 

Figure 10: AML Trajectory Plotting Example 

Based on their experience with these two integration efforts, 
the authors hope that a “happy medium” between the two 
approaches can be found. The POST integration is too 
limited and the OTIS integration exposes functions of the 
program that are very rarely, if ever, used for the simulation 
of hypersonic, airbreathing or rocket-powered launch or 
cruise vehicles. The team hopes to develop a user interface 
that is both robust and relatively easy to use by an engineer 
who is new to the trajectory simulation discipline. 

INITIAL APPLICATION 
The authors are currently working with two different 
hypersonic, airbreathing vehicle configurations. One 
configuration is a 2-D lifting body class vehicle, similar to 
NASA’s X-43 (Hyper-X) configuration, shown in Figure 11. 
The second configuration is an axisymmetric, rocket-based 
combined cycle (RBCC) powered, SSTO vehicle, similar to 
the GTX configuration [15], shown in Figure 12. 



 

Figure 11: Hyper-X Configuration 

 

Figure 12: GTX Configuration 

The geometric modeling efforts have been split between the 
two configurations. As mentioned above, many distinct 
OML modeling objects were developed for each 
configuration because they are such significantly different 
configurations. Also, the MERs that are integrated with the 
geometric objects will have to be tailored for each 
configuration. 

For instance, the fuel tank models for each configuration 
will be significantly different. For the 2-D vehicle, the tanks 
will be conformal. That results in a more complex geometric 
model, even at the conceptual-level, and a MER which will 
estimate that the conformal tank is heavier than a cylindrical 
one for the same surface area, volume and/or pressure. 
However, for the axisymmetric vehicle, the fuel tanks will 
be mostly conical. These tanks can be modeled with simpler 
geometric objects and require MERs that predict a tank that 
weighs less than the conformal tank for similar design 
conditions. 

For the other disciplines (i.e., propulsion flow path analysis, 
aerodynamic analysis and trajectory simulation), most of the 
author’s effort to date has concentrated on the 2-D lifting 
body configuration. This decision was based on the author’s 
previous experience in modeling these configurations as 
well as the availability of analysis codes and experimental 
results for configurations of this class. 

ACKNOWLEDGEMENTS 
Bob Pegg of the NASA Langley Research Center deserves 
recognition for his support of the AVS spreadsheet-based 
weights model. Additionally, the authors wish to thank 
Carrie Clewett of AFRL’s Air Vehicles Directorate and 

Alicia Hartong & John Livingston of ASC’s Air Vehicle 
Design branch for the concept and implementation of the 
AML-based weights model. 

CONCLUSIONS 
This effort has resulted in an integrated design modeling 
application for the conceptual-level design and analysis of 
hypersonic airbreathing vehicle configurations. 
Additionally, the authors believe that this application can 
form the basis of a more complex design environment that is 
capable of refining the design of hypersonic vehicles to the 
preliminary level. 

To be called a preliminary-level design and analysis 
application, additional disciplines are needed. Specifically, 
two disciplines, aerothermal analysis and finite element 
structural analysis, are needed to provide physics-based 
mass properties information. Aerothermal analysis will 
provide the temperatures and heat fluxes to which the 
vehicle will be exposed during its mission. This information 
can then be used to size the thermal protection system of the 
vehicle, which makes up a significant portion of the total 
vehicle weight. Ongoing efforts [5] could be expanded to 
integrate aerothermal analysis tools into AML. Finite 
element methods (FEM) can be used to size the main 
structural components (including the tanks) based on the 
loads they will see during a mission. The weights of these 
size components can then be estimated more accurately. The 
integration of FEM into AML is being explored under a 
separate effort [16]. 

Another discipline that is encountered during preliminary 
design is flight control. The major tasks of this discipline are 
the development of flight control laws, sizing of the 
elements of the flight control system, and the development 
of a six degree-of-freedom (6DOF) model of the vehicle. 
Codes like MATLAB or MATRIXx are commonly used for 
these tasks and because they are modern software products, 
information can easily be linked between these programs an 
AML. 

Finally, higher fidelity aerodynamic and propulsion analysis 
methods will be needed during the preliminary design 
process to generate the pressures, forces and moments to 
feed into the FEM and flight control disciplines. 
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