
AIAA - 98-4872
Optimization in the Adaptive Modeling Language

Duane E. Veley

Air Force Research Laboratory, Structures Division, AFRL/VASD
2130 Eighth St., Ste. 1, Wright-Patterson AFB OH 45433-7542
Abstract

The Adaptive Modeling Language (AML) is an
object-oriented, knowledge-based programming lan-
guage with some unique capabilities which make it a
very versatile design environment. Some of these capa-
bilities include dependency tracking, demand driven
calculations, run-time model modification and collabo-
rative engineering. Because the model can be modified
at run-time, the user of the code is permitted more flexi-
bility in the choosing of the design variables, objectives
and constraints than the code developer initially con-
ceived. However, one of the current deficiencies of
AML for the design process is optimization. This paper
presents an integration of the Adaptive Modeling Lan-
guage with the Design Optimization Tools (DOT), a
commercial off-the-shelf optimization algorithm. An
example showing the use of DOT in AML is given. User
supplied gradient information is obtained from auto-
matic differentiation in AML. An overview of automatic
differentiation in AML is given.

Introduction

The Air Vehicles Directorate of the Air Force
Research Laboratory (AFRL/VA) is looking to develop
a technology assessment system in order to determine
the impact of the technologies they develop on aero-
space vehicles (Veley et al, 1998). The specifications for
the Aerospace Technology Assessment System (ATAS)
provide not only a description of what ATAS is to do,
but specifications on the architecture of the environment
in which the system is developed. Several environments
are potentially suitable to accomplish the ATAS objec-
tives and the Adaptive Modeling Language (AML) is

one of these environments. The purpose of this paper is
to assess how optimization, one of the technology
requirements for ATAS, operates in the AML environ-
ment.

Overview of AML

The Adaptive Modeling Language (AML) is an
object-oriented, knowledge-based, programming lan-
guage developed by TechnoSoft, Inc. AML has several
unique capabilities which make it an excellent language
for designing engineering systems. These capabilities
include dependency tracking, demand-driven calcula-
tions (lazy evaluations), adaptive class structure, and the
flexibility of properties to be of any class. These capa-
bilities provide a powerful tool by which design studies
can be made rapidly.

Dependency tracking is the ability of any object
(including properties) to know on which objects/proper-
ties it depends and which objects/properties it effects.
For example, the width of a file cabinet may depend on
the width of the drawers, the number of drawers and the
thickness of the shell. At the same time the width of the
drawers may depend on the size of paper (U.S. letter,
U.S. legal, A4, etc.) that is intended to be stored in the
file cabinet. The drawer would know that if a different
paper size were selected, its width would need to change
also. Furthermore, the cabinet would know that its width
would need to be changed since the width of the drawer
is being changed.

In AML a value is computed only when that calcula-
tion is demanded, hence the term, demand-driven calcu-
lations. Calculations can be demanded either directly or
indirectly. If the paper size is changed, as in the example
above, the width of the drawer and the width of the file
cabinet are smashed (i.e., a value is no longer associated
with the width of the drawer or file cabinet) since these
properties depend on the paper size. If the user asks to
see the width of the file cabinet at this point, the width
of the file cabinet is said to be demanded directly. Since

“This paper is declared a work of the .S. Government
and is not subject to copyright protection in the United
States.”
1
American Institute of Aeronautics and Astronautics

l Bl i Z

is
hey
m-
lyst
w
ilt
r

el-
 a

nto
o
ch
n

it-

s
g
i-
m-
e
pec-
-
f
ith

e
s.

he
e

the file cabinet width depends on the width of the
drawer, the width of the drawer is also demanded, but
indirectly. New values for the cabinet width and drawer
width are now available.

A look at our file cabinet would reveal that so far
there is an outer cabinet and there are drawers, but the
hardware is missing. The drawers need handles so that
can be opened and closed, they need rails to slide along
and one might want to add a lock to the file cabinet.
These things may not be part of the original class defini-
tion of the file cabinet, but that does not present a prob-
lem to AML. After the cabinet is sized for the paper, or
even before, these other features may be added to an
instance of the file cabinet model. This ability to add
properties and subobjects to an instantiated object is
known as an adaptive class structure. That is to say that
the class structure of the file cabinet can be adapted to
include the hardware after the file cabinet object has
been instantiated. Now that the cabinet has rails for the
drawers, the front panel of the drawer and the entire cab-
inet may be made wider to allow for the rails. The rules
defining the cabinet width may change because the rails
were added. This ability to modify the formulas of prop-
erties after they have been instantiated is another feature
of the adaptive class structure.

Since the cross-section of the rail helps describe the
nature of the rails as opposed to being an object that is a
discrete portion of the object, it would be desirable to
store the cross-section as a property rather than a subob-
ject. Even though the cross-section does not have the
typical value-function form of a property, it can be
placed as a property of the object, since all properties
are objects.

Now suppose that the designer of file cabinets is not
the designer of rails for file cabinets. The requirements
that you have developed for the rails require a new rail
design. These rail requirements are stored in the model.
A rail designer can access the model that is on the file
cabinet designer’s computer from another computer, get
the requirements for the rails, design the rails on the rail
designer’s computer, and send the designed rails back to
the file cabinet designer’s computer. Similarly, the ana-
lyst can access the model of the file cabinet and rails and
perform a stress analysis on the system. Each of these
engineers can work on their own machine, accessing the
same model and report results back to a central model.
This feature of AML truly allows concurrent engineer-
ing to occur.

Suppose that the objective of this file cabinet design
is to satisfy customer needs. A number of customers
have called and complained that the file cabinets are too
heavy to move. However, you know from past experi-
ence that many people try to move the file cabinets
while they are full and the cabinets must be strong

enough to handle that situation. The objective of th
new design then is to redesign the cabinets so that t
are lighter yet still strong enough that they are not da
aged when moved full. So as the designer and ana
need optimization to aid in finding a suitable ne
design. However, AML does not currently have a bu
in optimization algorithm, but it can interface with othe
codes including optimization algorithms.

To interface with another code, the program dev
oper can either have AML create an input file, launch
stand-alone program and read the result file back i
AML or the developer can write an AML interface t
call a function that is written in another language, su
as FORTRAN, C or C++. In this paper, the latter optio
is used to interface DOT, an optimization method wr
ten in FORTRAN, to AML.

Automatic Differentiation Methodology

Optimization of functions of continuous variable
requires gradient or derivative information. By applyin
the rules of differentiation to a computer code, add
tional code can be automatically generated which co
putes the derivatives of the original code. Th
derivatives of the code that are generated are those s
ified by the user of the automatic differentiation algo
rithm. For the optimization problem the derivatives o
concern are those of the objective and constraints w
respect to the design variables.

Mathematical Formulation

The fundamental principle used in this effort is th
chain rule as it applies to functions of several variable
This can be stated as: Given a function u of several vari-
ables, x, y, z, and t, some of which are functions of one
of the variables, t

, , , . (1)

The derivative of the function u with respect to t may be
written as

. (2)

Likewise the partial derivatives may be expanded by t
chain rule for several variables. For example, if th
function u has the form ,
then

. (3)

u f x y z t, , ,()= x g t()= y h t()= z k t()=

td
du

x∂
∂u

td
dx

y∂
∂u

td
dy

z∂
∂u

td
dz

t∂
∂u

+ + +=

u f x y z q r t() s t(),(), , ,()=

t∂
∂u

q∂
∂u

t∂
∂q

q∂
∂u

r∂
∂q

t∂
∂r

s∂
∂q

t∂
∂s

+
 = =
2
American Institute of Aeronautics and Astronautics

b

l Bl i Z

t
dd
”
b-
Implementation

The Adaptive Modeling Language (AML) is an
object-oriented package that uses the syntax characteris-
tics of LISP. In this syntax a function and its arguments
are given in a list, when the function is the first item in
the list. The result of executing that list is the result of
the function.

Two classes of objects are created for doing auto-
matic differentiation in AML: the TOTAL-DERIVA-
TIVE-OBJECT and the PARTIAL-DERIVATIVE-
OBJECT. Both inherit form PROPERTY-OBJECT to
give them all the features of a value-formula property.
The automatic differentiation algorithm (ADA) puts for-
mulas that look like Eq. (2) into the TOTAL-DERIVA-
TIVE-OBJECT. The ADA uses Eq. (3) to symbolically
differentiate the formula of the dependent variable
(property) with respect to the intermediate independent
variable (property) and the resulting formula is stored in
the PARTIAL-DERIVATIVE-OBJECT.

In finding a derivative in AML, the ADA first
checks to see if the derivative already exists. If the
derivative does not exist, a TOTAL-DERIVATIVE-
OBJECT is added as a property of the dependent vari-
able object. If the derivative already exists, the ADA
checks to see if the formula for the dependent variable
has changed. If it has changed (or the TOTAL-DERIVA-
TIVE-OBJECT has just been created), a new formula is
computed for the TOTAL-DERIVATIVE-OBJECT. The
TOTAL-DERIVATIVE-OBJECT creates, if necessary,
all PARTIAL-DERIVATIVE-OBJECT and TOTAL-
DERIVATIVE-OBJECT instances that it needs.

To create the formula for a total derivative, the
dependencies of the dependent property are searched to
see if they include the independent property. This search
includes both direct and indirect dependencies. If no
dependency is found, the formula, and hence the value,
of the derivative is zero. If dependencies are found, par-
tial derivatives and total derivatives called for by direct
dependencies are created, if necessary. In creating a total
derivative, additional partial and total derivatives may
be required and are created, if they do not already exist,
through recursion.

The partial derivative objects are initiated in much
the same way as the total derivative object. First, the
ADA checks to see if the partial derivative object exists
then adds one if it does not exist. The formula of the
dependent variable is checked to see if it has changed
and if it has, a new partial derivative formula is created.
The primary difference in the partial and total derivative
properties is the way in which the derivatives are com-
puted. Whereas, the total derivative object only imple-
ments Eq. (2) (i.e., the formula for total derivatives is
simply the sum of products of other total and partial

derivatives), the partial derivative formulas are the
derivatives of the actual formulas.

The list nature of AML aids in the automatic partial
differentiation of functions. Each list is processed by
looking at the first element of the list; this element is the
function name. A large case construct directs the differ-
entiation procedure to the appropriate rules for that
function. For example, if the function name is SIN, the
case selector would call the function which partial dif-
ferentiates the SIN function. Since the SIN function
takes only one argument, it uses the chain rule to return
a formula that is the product of COS of the argument
and the partial derivative of the argument with respect to
the independent variable. The partial derivative of the
argument is obtained by recursively calling the large
case construct that directs the partial derivative opera-
tions. This recursive calling of the partial differentiation
function is in effect an implementation of the chain rule
of differentiation.

In order to clarify the process a little better, a small
example is given. A class called cube is defined in Fig.
1. The circumflex (^) preceding the names in the formu-
las tells the formula to look for the property (or sub-
object) that is under the cube. Also note that it does not
matter in which order the properties are listed. This is
due to the dependency-tracking and demand-drive cal-
culation features of AML. Upon creating a model of
class cube, one would find that it has the properties
height, width, depth, and cost. None of these properties
have subproperties at the time that they are created. The
dependencies between the properties are shown in Fig.
2.

It is desired to find the sensitivities of cost to the
geometric parameters (e.g., height and depth). In com-
puting the derivative of cost with respect to depth, a
TOTAL-DERIVATIVE-OBJECT, d_depth, is added to
the cost property and is given the formula (+ (* (the cost
p_width) (the width d_depth)) (the cost p_depth)). In
generating this formula, additional derivative properties
are generated in a recursive fashion: (the cost p_width),
(the cost p_depth) and (the width d_depth). If one were
to examine the formula for (the width d_depth), one
would find that another object, (the width p_depth) is
also needed to compute that formula. The recursive
nature of the ADA will create each of the needed deriva-
tives until all of the derivatives are completed.

It is appropriate at this time to interpret the formula
for d_depth. A formula is given by a set of nested lists.
A list is defined by a matching pair of parentheses. The
first item in the list is the function name, so for this for-
mula the functions used are “+”, “*” and “the”. The firs
two functions take the remaining items in its list and a
or multiply them together as appropriate. The “the
function is a means of referring to a property or subo
3
American Institute of Aeronautics and Astronautics

b

l Bl i Z

A
 is
la.
ine
ly
or
be
s
s
t
te

at

on
rty-
d to
nly
n-

dis-
lly

rete
sed

in
l
wo
ve
e

ject. The circumflex seen earlier is a special form of the
“the” function. The “d_” and “p_” notations show that
the property is a total derivative or partial derivative
object, respectively. The reference (the width d_depth)
points to the property that is the total derivative of width
with respect to depth. Likewise, the reference (the cost
p_width) points to the property that is the partial deriva-
tive of cost with respect to width.

The derivatives of cost with respect to height could
similarly be obtained and would contain a reference to
(the cost p_width). Since this was already generated
while getting (the cost d_depth), it is not generated
again. A simple conformation that the formula for cost
has not changed would prevent the ADA from calculat-
ing these derivatives again. Similarly, if width is a con-
straint, the formulas for the derivatives of width with
respect to height and depth would have already been
computed.

The ADA does not actually compute the values of
the derivatives, but simply computes the formulas. The
values of the derivatives are then obtained when the
derivative is requested either directly or indirectly via
demand-driven calculations. For example, if the value
of (the cost d_depth) is requested directly, the value of
(the cost p_width), (the cost p_depth), (the width
d_depth) and (the width p_depth) are all requested indi-
rectly and are evaluated at that time, if they have not
already been evaluated.

The implementation of the ADA in AML allows the
user to create additional derivatives as desired. All the
derivative objects that are automatically generated by
the ADA could have been defined in the class definition.
If properly named, the ADA will recognize the deriva-

tive object and would not create a new one. The AD
would however check to make sure that the formula
up to date, and if not generate a new derivative formu
The code developer can also write functions that def
the derivatives of a function. If the function is proper
named, and either loaded into the AML environment,
stored in the appropriate file, then that definition can
used by the ADA, and the ADA will not generate it
own derivative. The ability to use pre-defined function
is particularly useful if a function is written in a differen
language. The ADA would not be able to differentia
that function, but if derivative functions existed in AML
or the other language, the ADA could make use of th
function if its AML interface function is properly
named.

Although the dependent variables may depend
objects of classes that are not derived from the prope
object class, sensitivities to these objects are assume
be identically zero. This is a safe assumption since o
classes that inherit from the property-object class co
tain a formula and value. Other classes represent
crete objects and hence, their derivatives are identica
zero. If design studies are to be done with these disc
objects as independent variables, a non-gradient ba
optimization procedure is required.

Current Status of Automatic Differentiation in AML

Since the first paper on automatic differentiation
AML was written (Veley and Zweber, 1998), severa
features have been added to or enhanced in it. T
enhancements to the differentiation of methods ha
been implemented. The first allows properties of th

(define-class cube
:inherit-from (box-object)
:properties(

height 4.0
width (+ (* 6.0 ^depth)

(* 0.8 ^height)
)

depth 0.1
cost (* ^depth

(+ ^height ^width)
)

)
)

 Figure 1. Example of an AML class definition

cost

height

width

depth

 Figure 2. Dependency structure of cube class
properties
4
American Institute of Aeronautics and Astronautics

b

l Bl i Z

er
ints
-

n-
s
m
of
h
he
d
ta

ev-
but
ed

t-
pe.
ri-

ime
his
OT
use
.
-

s
of

-
al-
ta-
s
e

 not
hat
ve
ta-
-
ign

OT
or
I-
,

object to be independent variables. The other allows
derivative functions and methods to be accessed from
source files. Additional capabilities include the ability to
follow the object tree structure better (i.e. the dependent
and independent objects are not necessarily properties
of the same object), the ability to differentiate vectors
and arrays including inherent vector functions, and the
ability to differentiate the LOOP function for the more
common clauses.

The automatic differentiation algorithm is still far
from perfect and requires additional work. In particular,
the ADA has trouble when an argument to a function is
itself a function, and the dependency tracking of formu-
las does not work properly.

DOT and the AML-DOT Interface

The Design Optimization Tools (DOT) (Vanderp-
laats, 1995) is a set of FORTRAN subroutines that allow
several optimization algorithms to be performed. The
default algorithm is the modified method of feasible
directions (MMFD), which is the algorithm that is used
in the example presented later. Although only one of the
possible algorithms is used, all algorithms within DOT
are accessible to AML through the one interface that is
made.

Some optimization algorithms are coded so that the
name of an analysis subroutine is passed to the opti-
mizer. The optimizer is called once and the optimizer
calls the analysis module as many times as it needs for
the optimization process. When the optimization is com-
plete, the optimization routine returns control to the call-
ing routine. This set up is not convenient for interfacing
with AML because it requires to interfaces: one where
AML calls the optimization algorithm and the other
where the optimization calls the analysis module which
is also in AML.

With DOT, only one interface is required. This is the
interface where AML calls DOT. When DOT requires
an analysis to be performed, gradient information or is
complete, DOT returns control to the calling routine
with a flag that indicates which of these options is to be
executed. Thus, DOT is to be called many times from
within a loop that also includes the objective, constraint
and gradient calculations. This feature of DOT allows
optimization to act as a module rather than a driver. It
also makes optimization easier to integrate into a com-
puter program.

In creating the AML-DOT interface, one object
class, one foreign function and one method are defined
in AML. The object class defined is called the DOT-
OPTIMIZATION-OBJECT and it inherits its properties
from the object-class that is a generic class for which the

dependency tracking capability is established. An object
of this class will be a subobject of the object being opti-
mized and is used merely to store the information that is
sent to and from DOT. The DOT-OPTIMIZATION-
OBJECT contains no subobjects. The properties in this
object are the parameters that are passed back and forth
to DOT through the subroutine’s argument list. In ord
that the current value of the design variables, constra
and objectives may be used, the DOT-OPTIMIZATION
OBJECT stores the pointers to those properties.

A foreign function definition is the actual interface
between AML and code that is written in another la
guage. The AML foreign function definition describe
the function or subroutine that is to be called fro
AML. This function is described by its name, the type
its return value (AML assumes that it is interfacing wit
a function and not necessarily with a subroutine), t
language in which the foreign function is written, an
the arguments to the function along with their da
types.

A method in AML is like a function except that a
method applies to a particular class of objects. Thus s
eral methods may be written with the same name
each acting on a different class. The method develop
here, DOT-OPTIMIZE, interfaces the DOT-OPTIMIZA-
TION-OBJECT class to the foreign function by conver
ing the properties of the object to the proper data ty
Values associated with the pointers for the design va
ables, constraints and objective are obtained at this t
and placed in vectors that are passed to DOT. At t
time, if any of the values that are being passed to D
have not been computed, they will be computed beca
of the demand-driven calculation capability of AML
DOT is then called a single time through the AML for
eign function definition for DOT. Upon return from
DOT, DOT-OPTIMIZE places the results (value
returned from DOT) into the appropriate properties
the DOT-OPTIMIZATION-OBJECT. The design vari-
able pointers contained in the DOT-OPTIMIZATION
OBJECT are used to direct the new design variable v
ues to the appropriate properties. Since the compu
tions are demand-driven in AML and propertie
maintain their value (once computed) until one of th
properties it depends on is smashed or changed, it is
prudent to change all of the design variable values t
are returned from DOT, but only the ones that ha
changed. This is particular useful (reduces compu
tional time) when DOT’s internal finite-difference gra
dient method is used, since it changes two des
variables at a time, at most.

These three parts provide an interface between D
and AML, but do not call DOT repeatedly as needed f
the optimization process. An additional method, OPT
MIZE, is defined which operates on the AML-CLASS
5
American Institute of Aeronautics and Astronautics

b

l Bl i Z
the top level class from which all other classes inherit.
This allows the method to work on all objects regardless
of class. This method adds the DOT-OPTIMIZATION-
OBJECT as a subobject to the object upon which the
method is operating if it does not already exist as a sub-
object of that object. OPTIMIZE then proceeds to call
the DOT-OPTIMIZE method and checks the code
returned from DOT to see how to proceed. The DOT-
OPTIMIZE function is called recursively passing either
object and constraint data or gradient data until DOT
returns an optimization complete code. The results of
the optimization are then stored in the DOT-OPTIMI-
ZATION-OBJECT and control is returned to the calling
function.

As is mentioned above, DOT returns a flag which
requests either the objective and constraints or the sensi-
tivities of the objective and constraints to be provided
for the current values of the design variables. The OPTI-
MIZE method deciphers the flag and generates the cor-
rect information. DOT can either request sensitivity data
to be provided, or it can use the finite difference method
and compute derivatives itself. This option is specified
by one of the many parameters in the arguments list that
is passed to DOT. If sensitivity data is to be calculated
by the user, automatic differentiation, an emerging fea-
ture recently added to AML (Veley and Zweber, 1998),
would make this task of developing derivative informa-
tion easier. The OPTIMIZE method ties into the auto-
matic differentiation algorithm to obtain sensitivity data.

An efficiency of DOT is the way it requests user
supplied sensitivities. DOT is normally not concerned
with the sensitivities of all of the constraints, but only
those that are violated and those that are active (close to
the limit). Thus, the set of sensitivities requested is usu-
ally not the full set. This limited request of constraint
sensitivities plays well with the demand-driven calcula-
tion capability of AML. AML will only compute those
derivatives that are needed by DOT.

Example

A conceptual level design study is performed to
assess the trade-offs between aerodynamics and struc-
tures for selected wing dimensions. The wing planform
is shown in Fig. 3. A coarse description of the aerody-
namic force coefficients for lift, drag and moment are
given by

(4)

(5)

(6)

where CL, CD and CM are the lift, drag and moment
coefficients, respectively, cr is the root chord, b is the
span, S is the wing area, α is the angle of attack and AR

is the aspect ratio given by . An elliptic dis-

tribution of the total normal force coefficient as a func-
tion of spanwise location is given by

. (7)

where is the mean aerodynamic chord length, c(y) is
the chord length at spanwise location y and Cn is the

normal coefficient of the wing. These relations are used
to compute the shear force and bending moment at the
wing root for a positive high angle of attack condition
using the following relations:

(8)

(9)

where Vi is the shear force at station i, Mi is the moment
at station i, yi is the spanwise location of station i, q is

the aerodynamic pressure and the stations begin at the
tip of the wing where the shear and moment are both
zero. These loads are then used to compute the shear
flow in the skin and webs and the direct stress in the
booms of the idealized wing structure shown in Fig. 4
(see Megson, 1990).

CL
0.45π3

180

crb

S
--------α 0.22+=

b/2

ct

cr Area = S/2

y

 Figure 3. Wing planform.

CD

CL
2

πAR
----------=

CM 0.03CL– 0.046+=

AR b2 S⁄=

Cn y() c
c y()

2Cn

π

 1
4y

2

b2
--------–=

c

Vi Vi 1– q
ciCni ci 1– Cn i, 1–+()

2
--- yi 1– yi–()+=

Mi Mi 1–

Vi Vi 1–+

2
------------------------ yi 1– yi–()+=
6
American Institute of Aeronautics and Astronautics

b

l Bl i Z
The wing is to be designed for minimum mass (ini-
tial value 224 kg) with constraints on the direct stress in
the booms, on the shear flows in the webs and on the
total lifting capability of the wing at cruise conditions.
The equations for the aerodynamic load coefficients are
assumed to remain suitable for changes in the wing
geometry within the design space. The initial values and
side constraints of the design variables are given in
Table 1. The areas of the four corner booms are linked to
a single design variable and the areas of the midchord
booms are linked to .a single design variable. The

design variables are the areas of booms 1 and 2 (B1 and
B2), the root chord length (cr), the tip chord length (ct),

the span (b), the skin thickness (ts), the web thickness
(tw), the thickness of the wing at the root (tr) and the
thickness of the wing at the tip (tt). It is assumed that the

shear load acts along the center spar. Then at any span-
wise location, the cross-section is symmetrical and the
shear flows will be symmetrical. Thus, constraints are
placed on the shear stresses in webs 1-6 and 2-5, (τij

where i and j denotes the booms on either side of the
web). Due to the symmetry of the cross-section, only
two different stresses are realized in the booms. There-
fore, constraints are placed only on the direct stresses in
booms 1 and 2 (σ1z and σ2z). In order to keep the wing
design from being governed totally by structural consid-
erations, a constraint is also placed on the total lifting
force of the wing at cruise conditions. The constraint
limits are given in Table 2.

The optimization was performed in two ways: using
the finite difference capability within DOT and using
the user supplied gradients obtained from automatic dif-
ferentiation. The results given in Table 3 show that the
two methods each obtained the same design

The real interest in this study though is the timing of
the optimization process. A cpu timer was initiated at
the beginning of the optimization loop for both the auto-
matic differentiation supplied gradient and the internal
finite difference gradients. The finite difference method
took 14.3 cpu seconds and the automatic differentiation
supplied gradients run took 17.1 cpu seconds. The finite
difference gradient method required 243 function evalu-
ations and the automatic differentiation supplied gradi-
ents required only 151 function evaluations and 10
gradient evaluations. Assuming that the average func-
tion evaluation took the same time for both cases, the
average gradient calculation would have taken 14 times

Table 1: Initial values of design variables
and side constraints

lower
bound

initial
value

upper
bound

B1, mm2 600 1000 1500

B2, mm2 600 1200 1500

cr, m 2.5 3.2 3.8

ct, m 1.75 2.0 3.2

b, m 8.0 12.0 18.0

ts, mm 1.0 3.0 10.0

tw, mm 1.0 2.0 10.0

tr, mm 600 750 1500

tt, mm 300 400 1000

0.4cr

0.4cr

tr

tt

b/2
0.4ct

0.4ct

1

2

3

4

5

6

y

 Figure 4. Wing structure

Table 2: Constraints

Constraint Relation Limit
Initial
Value

σ1, N/mm2 ≤ 100 110

σ2, N/mm2 ≤ 100 110

τ16, N/mm2 ≤ 25.0 25.5

τ25, N/mm2 ≤ 25.0 33.8

Fn, N ≥ 97,000 96,900
7
American Institute of Aeronautics and Astronautics

b

l Bl i Z

-
ro-

,

-

n
y,
as long as a function evaluation. However, the assump-
tion may not be a valid one.

The demand driven calculations feature may have
significantly influenced the results. In the general case
of looking at a new function evaluation or gradient eval-
uation, all of the design variables would have changed
thus creating the greatest amount of demand-driven
computation that needs to be performed for the respec-
tive evaluation. However, when DOT is computing gra-
dients with the finite difference method, at most two
design variables have changed. Therefore, the number
of calculations needed are reduced for those iterations.
On the other hand, the gradient evaluations using the
AD supplied gradients will always have all design vari-
ables different from the previous time.

It is also possible that inefficiencies in the code gen-
erated by the automatic differentiator exist that cause the
AD supplied gradient method to be slower. The slow
down may also be a function of the problem. It is not
unheard of for code generated by automatic differentia-

tion in other languages to be as slow as or slower than
using finite difference gradients. However, it remains
that if automatic differentiation in the Adaptive Model-
ing Language is to survive, additional assessments into
the efficiency of that code need to be made.

Summary

Optimization in the Adaptive Modeling Language is
as easy as it is in any other language. DOT works well
with AML and the automatic differentiation in AML by
promoting the modularity of optimization and the
demand-driven computations of only active constraint
sensitivities. The demand-driven calculations capability
of AML even enhances the computational efficiency of
the finite difference gradients even to the point where
they are competitive with automatic differentiation sen-
sitivities. A timing comparison between the optimiza-
tion results using the finite difference gradients and
those using the automatic differentiation supplied gradi-
ents show that the automatic differentiation algorithm
could use some improvements in the efficiency of the
code that it generates.

Bibliography

DOT Design Optimization Tool (1995), Vanderplaats
Research & Development, Colorado Springs CO.

Megson, T. H. G. (1990), Aircraft Structures for Engi-
neering Students, Second Edition, Halstaed
Press, New York, NY.

Veley, D. E., Blair, M., and Zweber, J. V. (1998), “Aero
space Technology Assessment System,” P
ceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and
Optimization, St. Louis, MO, September 2-4
1998.

Veley, D. E. and Zweber, J. V. (1998), “Automatic Dif
ferentiation in the Adaptive Modeling Lan-
guage,” Proceedings of the Australasia
Conference on Structural Optimization, Sydne
Australia, February 11-13, 1998.

Table 3: Results

Finite
difference

Automatic
differentiation

B1, mm2 823 824

B2, mm2 823 824

cr, m 3.80 3.80

ct, m 3.20 3.20

b, m 9.41 9.41

ts, mm 1.00 1.00

tw, mm 2.15 2.15

tr, mm 842 841

tt, mm 300 300

σ1, N/mm2 100 100

σ2, N/mm2 100 100

τ16, N/mm2 25.1 25.1

τ25, N/mm2 25.1 25.1

Fn, N 96,700 96,700

mw, kg 129 129
8
American Institute of Aeronautics and Astronautics

b

	Optimization in the Adaptive Modeling Language
	Abstract
	Introduction
	Overview of AML
	Automatic Differentiation Methodology
	, , , . (1)
	. (2)
	. (3)
	Figure 1. Example of an AML class definition

	Current Status of Automatic Differentiation in AML
	DOT and the AML-DOT Interface
	Example
	Figure 3. Wing planform.
	(4)
	(5)
	(6)
	. (7)
	(8)
	(9)
	Figure 4. Wing structure
	Table 1: Initial values of design variables and side constraints
	Table 2: Constraints
	Table 3: Results

	Summary
	Bibliography

